

Les fonctions

Fiche méthode: la fonction carré

Comparer f(a) et f(b) pour f la fonction carré ...

Pour comparer a² et b², il suffit de comparer a et b, si a et b sont de même signe et d'appliquer les définitions des variations de fonction.

Commentaire:

- Si a et b sont positifs, alors $a < b \Rightarrow a^2 < b^2$.
- Si a et b sont négatifs, alors $a < b \Rightarrow a^2 > b^2$.
- Si a et b sont de signes contraires, alors $|a| < |b| \Rightarrow a^2 < b^2$.

Résoudre une équation de la forme $x^2 = a ...$

Pour résoudre l'équation : $x^2 = a$, en fonction des valeurs de a, si a < 0, alors il n'y a pas de solution, si a=0 alors il y a une solution 0, et si a>0 alors il y a 2 solutions \sqrt{a} et $-\sqrt{a}$.

- $x^2 = -1 \Leftrightarrow pas\ de\ solution$.
- $x^2 = 0 \Leftrightarrow x = 0$.
- $x^2 = 2 \Leftrightarrow x = \sqrt{2}$ ou $x = -\sqrt{2}$.

Résoudre une inéquation de la forme $x^2 < a$ ou $x^2 > a$...

Pour résoudre l'inéquation x^2 a ou x^2 a, en fonction des valeurs de a, on applique les formules du cours...

Exemples: Résoudre les inéquations suivantes:

- $\begin{array}{ll} \bullet & x^2 > -1 \iff x \in \mathbb{R}. \\ \bullet & x^2 < 1 \iff x \in]-1; 1[. \\ \bullet & x^2 \geq 2 \iff x \in]-\infty; \sqrt{2}] \ \cup \ \left[-\sqrt{2}; +\infty\right[. \end{array}$

Pour étudier la position relative des courbes des fonctions f et g ...

Pour étudier la position relative des courbes de f et g, on étudie le signe de f(x)-g(x). Si f(x)-g(x)est positif, alors la courbe de f est au-dessus de la courbe de g et Si f(x)-g(x) est positif, alors la courbe de f est au-dessus de la courbe de g. Les solutions de f(x)-g(x)=0 sont les abscisses des points d'intersection des courbes de f et g.

Exemple: Etudier la position relative des courbes de f et g avec $f(x)=x^2$ et g(x)=2x-1.

Pour étudier la position relative des courbes de f et g, on étudie le signe de $f(x)-g(x)=x^2-2x+1$. $x^2-2x+1=(x-1)^2$ est toujours positif car c'est un carré. Donc La courbe de f est au-dessus de la courbe de g.