Exercice 3 (7 points) Thèmes : Fonction exponentielle et suite

Partie A:

Soit h la fonction définie sur R par

$$h(x) = e^x - x$$

- 1- Déterminer les limites de h en $-\infty$ et $+\infty$.
- 2- Étudier les variations de h et dresser son tableau de variation.
- **3-** En déduire que : si a et b sont deux réels tels que $0 \le a \le b$ alors $h(a) h(b) \le 0$.

Partie B:

Soit f la fonction définie sur R par

$$f(x) = e^x$$

On note C_f sa courbe représentative dans un repère $(0; \vec{\iota}, \vec{\jmath})$.

1- Déterminer une équation de la tangente T à \mathcal{C}_f au point d'abscisse 0.

Dans la suite de l'exercice on s'intéresse à l'écart entre T et \mathcal{C}_f au voisinage de 0. Cet écart est défini comme la différence des ordonnées des points de T et \mathcal{C}_f de même abscisse.

On s'intéresse aux points d'abscisse $\frac{1}{n}$, avec n entier naturel non nul.

On considère alors la suite (u_n) définie pour tout entier naturel non nul n par :

$$u_n = \exp\left(\frac{1}{n}\right) - \frac{1}{n} - 1$$

- **2-** Déterminer la limite de la suite (u_n) .
- **3- a-** Démontrer que, pour tout entier naturel non nul n,

$$u_{n+1} - u_n = h\left(\frac{1}{n+1}\right) - h\left(\frac{1}{n}\right)$$

où h est la fonction définie à la partie A.

b- En déduire le sens de variation de la suite (u_n) .

4- Le tableau ci-dessous donne des valeurs approchées à 10^{-9} des premiers termes de la suite (u_n) .

n	u_n
1	0,718281828
2	0,148721271
3	0,062279092
4	0,034025417
5	0,021402758
6	0,014693746
7	0,010707852
8	0,008148453
9	0,006407958
10	0,005170918

Donner la plus petite valeur de l'entier naturel n pour laquelle l'écart entre T et \mathcal{C}_f semble être inférieur à 10^{-2} .